COMMUNICATION ENGINEERING

Introduction to Information \& Entropy

Introduction

$>$ What is communication

A communication system
$>$ Process of conveying message or information
$>$ Deals with the flow of information bearing signal from one place to another over a communication channel
$>$ Information can be electrical signals, words, pictures etc.

INTRODUCTION

$>$ What is Information and how to define the measure of an amount of information?
$>$ How can it be applied to improve the communication of information?

To answer these questions we need to study Information theory

INFORMATION THEORY

Information theory deals with the problem of efficient and reliable transmission of information

INTRODUCTION

$>$ Information theory is a branch of probability theory which may be applied to the study of communication system
$>$ It deals with mathematical modelling and analysis of a communication system
$>$ It also answers the fundamental questions in communication

* the irreducible complexity below which signal cannot be compressed
* ultimate transmission rate for reliable communication over a noisy channel

What is information

$>$ Information is knowledge that can be used
\Rightarrow The amount of information associated with various messages are different. Some messages contain more information while others contain less information
$>$ For eg. If a dog bites a man : its no news but if a man bites a dog : it's a news
$>$ Thus MORE the probability of an event LESSER the information it contains
$>$ Amount of information depends upon the uncertainty of the event rather than its actual content.

Information sources

$>$ Device which produces messages either analog or discrete, the outcome of which is selected at random according to the probability distribution
$>$ Discrete source has finite set of symbols as outputs

* Set of symbols---SOURCE ALPHABET
* Elements of set--- SYMBOLS OR LETTERS
$>$ Information Source can be classified as
* Having memory
* Being memory less
$>$ We will study Discrete Memory less Source (DMS)

INFORMATION CONTENT OF A SYMBOL

$>$ Mathematical measure of information should be

* proportional to the uncertainty of the outcome
\star Information content in independent outcomes should add
$>$ Let a DMS denoted by X having alphabet $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{m}}\right\}$ probability $P\left(x_{j}\right)$ is the probability of occurrence of symbol x_{i} and the amount of information be $\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)$

$$
\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)=\log _{\mathrm{b}}\left(1 / \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)\right)=-\log _{\mathrm{b}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

Unit of I(X_{I})

$>$ The unit of $\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)$ is

* bit if $b=2$
* nat if b=e
* hartlley/decit if b=10
$>$ It is standard to use $\mathrm{b}=2$

$$
\log _{2} \mathrm{a}=\log _{\mathrm{e}} \mathrm{a} / \log _{\mathrm{e}} 2
$$

PROPERTIES OF I $\left(\mathrm{X}_{\mathrm{I}}\right)$

$>\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)=0$ for $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
$\Rightarrow \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right) \geq 0$
$\Rightarrow \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right) \geq \mathrm{I}\left(\mathrm{x}_{\mathrm{j}}\right)$ if $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) \leq \mathrm{P}\left(\mathrm{x}_{\mathrm{j}}\right)$
$\Rightarrow \mathrm{I}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{I}\left(\mathrm{x}_{\mathrm{j}}\right)$
if x_{i} and x_{j} are independent

PROBLEMS

1. In a binary PCM ' 0 ' occurs with probability of $1 / 4$ and ' 1 ' occurs with probability of $3 / 4$. Calculate the amount of information carried by each bit.
2. If there are M equally likely and independent symbols, what is the amount of information carried by each symbol . Given $\mathrm{M}=2^{\mathrm{N}}$ and n is an integer.

ENTROPY (AVERAGE INFORMATION)

$>$ In a practical communication system we transmit a long sequence of symbols from an information source
\Rightarrow As flow of information can fluctuate because of randomness involved in the selection of symbols, we require average information content of the symbols in a long message
$>$ Average information content per source symbol is called ENTROPY of the source.
$>$ Entropy is a measure of uncertainty

Mathematical Expression for Entropy

$>$ The mean value of $\mathrm{I}\left(\mathrm{x}_{\mathrm{i}}\right)$ over the alphabet of source X with m different symbols is given by

$$
H(X)=\sum_{i=1}^{m} P\left(x_{i}\right) I\left(x_{i}\right)=-\sum_{i=1}^{m} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)
$$

Entropy of binary source

\rightarrow For a binary source $\mathrm{m}=2$
$>$ Entropy is

$$
\begin{aligned}
& H(X)=-\sum_{i=1}^{2} P\left(x_{1}\right) \log _{2} P\left(x_{1}\right) \\
& \left(x_{2}\right)=(1-D)
\end{aligned}
$$

Let $P\left(x_{1}\right)=p$ and $P\left(x_{2}\right)=(1-p)$

$$
\begin{aligned}
H(X) & =-P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)-P\left(x_{2}\right) \log _{2} P\left(x_{2}\right) \\
& =-p \log _{2} p-(1-p) \log _{2}(1-p)
\end{aligned}
$$

The condition for maximum entropy is given by differentiating $\mathrm{H}(\mathrm{X})$ w.r.t p and equate it to zero
By putting

$$
\mathrm{d} / \mathrm{dp}(\mathrm{H}(\mathrm{x}))=0
$$

we get $\mathrm{P}=1 / 2$ i.e both messages are equally likely

CONTD...

\Rightarrow A plot of H as a function of p

$>$ The maximum value of H at $\mathrm{p}=1 / 2$ is

$$
H_{\max }=1 / 2 \log 2+1 / 2 \log 2=1 \mathrm{bit} / \mathrm{message}
$$

CONTD...

$>$ Similarly for M ary case entropy is maximum when all messages are equally likely

$$
H(X)=\sum_{i=1}^{m} P\left(x_{i}\right) I\left(x_{i}\right)=-\sum_{i=1}^{m} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)
$$

Probability of each symbol= $1 / \mathrm{M}$

$$
\begin{gathered}
H(X)=\sum_{i=1}^{m}\left(\frac{1}{M}\right) \log _{2}\left(\frac{1}{\frac{1}{M}}\right)=\sum_{i=1}^{m}\left(\frac{1}{M}\right) \log _{2}(M) \\
H_{\max }=\log \mathrm{M} \mathrm{bit} / \text { message }
\end{gathered}
$$

PROBLEMS

1. Consider a source X which produces five symbols with probabilities $1 / 2,1 / 4,1 / 8,1 / 16$ and $1 / 16$. Find the source entropy $\mathrm{H}(\mathrm{X})$.
2. Prove that $0 \leq H(X) \leq \log _{2} m$ where m is the size of the alphabet of X.

THANTE VOJ

